Using POE as a Way of Quantifying Probability of Failure

Harvey Haines

July 21, 2011 - PHMSA Workshop

Managing Challenges with Pipeline Seam Welds

Working Group 3: Identifying Gaps with Assessment Methods

Issues for Assessing Seam Anomalies

- Pressure Testing
 - After test is complete the risk is:
 - probability of pressure reversal
- In Line Inspection (ILI)
 - After testing the risks are:
 - Probability of Detection
 - Is a defect missed?
 - Probability of Identification
 - Are defects and benign anomalies correctly discriminated?
 - Sizing Error
 - Are the depth and length properly sized and accounted for?
- Sizing Error is directly related to probability of exceeding a safe threshold (POE)

Probability of Exceedance (POE) Analysis for Corrosion

- PoE: Probability of exceedance, the probability that actual severity of an indicated anomaly exceeds safe threshold
- Statistical basis for determining probability of failure
- Probability that Depth_{ILI} > 80% wt (probability of "leak")
- Probability that $P_{burst} < 1.1^*$ MOP (or abnormal operating pressure) P_{burst} (calculated using called depth and length)

Unity Plot

CUMMULATIVE DISTRIBUTION PLOT MFL Depth – Actual Depth

Mean = 2.8%

St Dev = $\pm 7.8\%$

80% Err = ±9.9%

data points = 27

Logarithmic Plot

for extrapolating to small probabilities

wt **POE** margin 10⁻³ 21% 10-4 26% **10**⁻⁵

30%

Probability of Exceedance (PoE) Analysis of Corrosion

- Statistical basis for prioritizing response
- Defensible rationale for continuing or terminating response
- Optimizes cost-benefit
- Can be incorporated into risk assessment program
- Similar to what is normally done by judgment

POE for a Crack Tool Run

(a recent example)

# points	76
mean	4.5%
st dev	19.7%
80% error	25.2%

POE for a UT Crack ILI Run

POE	wt margin
10 ⁻³	56%
10-4	69%
10 ⁻⁵	79%

- Measurement error is large
 - Error is from both ILI and in-ditch measurement
 - Cannot tell which is the larger error component
 - Only way to be certain of depth is destructive analysis in the lab
- Previous slide shows poor fit of normal distribution
 - POE margins for 0.001, 0.0001, and 0.00001 for a normal distribution best fit are 56%, 69%, and 79% respectively
 - Extrapolation of actual data shows larger margins of safety are needed for cracks than for typical corrosion ILI runs
- This is just a single example
 - Other ILI crack tool runs and in-the-ditch data may produce better results.

Wish List

- More accurate ILI tools
 Uncertainty of ± 10% of wall (or ± ½ mm for 0.200-in wt)
- More accurate in-the-ditch measurements
 - Same or better accuracy as ILI tools
- Better discrimination (and allowance for irregular wall shapes)
 - Most defects for seam issues are located in the seam where other benign anomalies are occurring
 - Offset plate edges, flash trim, poor trim, offset weld beads

